Identical Particles - from One to Many

John Chalker

Electrical resistivity

${\rm Copper} \qquad 1.7\times 10^{-8}~\Omega{\rm m}$

Diamond $1.0 \times 10^{12} \,\Omega \mathrm{m}$

More is Different

P. W. Anderson (1972)

"The reductionist hypothesis does not by any means imply a 'constructionist' one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe."

"The behaviour of large aggregates of particles, it turns out, is not to be understood in terms of simple extrapolation. Instead, at each level of complexity entirely new properties appear."

2016 Nobel Prize in Physics

For theoretical discoveries of topological phase transitions and topological phases of matter

D. J. Thouless, F. D. M. Haldane and J. M Kosterlitz

Outline

Identical particles in quantum mechanics

Metals and insulators

The integer quantum Hall effect

Dynamics of identical particles

Dynamics of identical particles

Unobservability of quantum trajectories

Quantum indistinguishability

 $N\mbox{-}{\rm particle}$ system described by wavefunction

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots\mathbf{r}_N)$$

Probability density unchanged by particle exchange

$$|\Psi(\dots\mathbf{r}_i\dots\mathbf{r}_j\dots)|^2 = |\Psi(\dots\mathbf{r}_j\dots\mathbf{r}_i\dots)|^2$$

Consequence of exchange is (at most) a phase

$$\Psi(\dots \mathbf{r}_i \dots \mathbf{r}_j \dots) = e^{i\chi} \times \Psi(\dots \mathbf{r}_j \dots \mathbf{r}_i \dots)$$

Quantum indistinguishability

Consequence of exchange is (at most) a phase

$$\Psi(\dots \mathbf{r}_i \dots \mathbf{r}_j \dots) = e^{i\chi} \Psi(\dots \mathbf{r}_j \dots \mathbf{r}_i \dots)$$

Exchanging twice returns to initial configuration, so

$$(e^{i\chi})^2 = 1$$

Hence two possibilities

$$e^{i\chi} = \left\{ egin{array}{cc} +1 & {f bosons} \ -1 & {f fermions} \end{array}
ight.$$

The importance of quantum statistics

⁴He 2 electrons + 2 protons + 2 neutrons boson

Superfluid below 2.17 kelvin

³He
 2 electrons + 2 protons + 1 neutron
 fermion
 Superfluid below 0.00249 kelvin

The Pauli exclusion principle

For two independent fermions, we might expect

$$\Psi(\mathbf{r}_1,\mathbf{r}_2)=\varphi_A(\mathbf{r}_1)\varphi_B(\mathbf{r}_2)$$

Antisymmetry under exchange requires instead

$$\Psi(\mathbf{r}_1,\mathbf{r}_2) \propto [\varphi_A(\mathbf{r}_1)\varphi_B(\mathbf{r}_2) - \varphi_A(\mathbf{r}_2)\varphi_B(\mathbf{r}_1)]$$

What if
$$\varphi_A(\mathbf{r}) = \varphi_B(\mathbf{r})$$
 ?

NO STATE!

Electron energy bands in solids

Metals vs insulators

Two-dimensional electron system + magnetic field

For example: in graphene — Geim and Novoselov (2004)

Controlling energy levels in a (two-dimensional) solid

Cyclotron frequency

$$\omega_c = \frac{eB}{m}$$

Spectrum

$$E_n = \hbar\omega_c (n + \frac{1}{2})$$

Controlling energy levels in a (two-dimensional) solid

Controlling energy levels in a (two-dimensional) solid

Controlling energy levels in a (two-dimensional) solid

Conduction via edge states

Generic resistance measurements

... every detail matters

resistance

Hall resistance

Value of Hall resistance?

Faraday's law

$$\oint \vec{E}(t) \mathrm{d}\vec{\ell} = -\frac{\mathrm{d}\Phi(t)}{\mathrm{d}t}$$

Hall effect

$$I(t) = \frac{1}{R_{\rm H}} \oint \vec{E}(t) \mathrm{d}\vec{\ell}$$

Charge transfer

$$Q = \int I(t) \mathrm{d}t = \frac{\Delta \Phi}{R_{\mathrm{H}}}$$

Flux quantum $\Delta \Phi = h/e$

 ${\rm Charge \ transfer} \quad Q = ne \\$

Value of Hall resistance

$$R_{\rm H} = \frac{\Delta \Phi}{Q}$$

$$R_{\rm H} = \frac{h}{ne^2}$$

Experiment

von Klitzing, Dorda, and Pepper (1980).

Experiment

von Klitzing, Dorda, and Pepper (1980).

Re-defining the ohm

Re-defining the ohm

"... the graphene-enabled quantum resistance system will provide the high-end electronics instrumentation industry with a primary resistance standard ... "

Summary

"More is different"

— reductionism vs emergence

Identical particles in quantum mechanics

- really, really identical

Metals & insulators

— macroscopic consequences of the exclusion principle

The integer quantum Hall effect

- resistance standard from fundamental constants